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Abstract: Using dimethyldioxirane, the selective transformation of aidehyde N,N-dimethyl-
hydrazones into the corresponding nitriles was achieved in high yield and under mild
conditions. The determination of the substituent effect on rates, along with an estimate of the
primary kinetic isotope effect using PhCH=NNMe, and PhCD=NNMe; provided usciul hinis
concerning the reaction mechanism. It was also observed that the nitrile products do not
undergo fur[her oxidation, even with excess dioxirane. @ 1998 Elsevier Science Ltd All rights reserved.
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particularly valuable is the oxidative conversion of aldehyde N,N-dialkylhydrazones using peracids, such as
magnesium monoperoxyphtalate hexahydrate (MMPP). 1f

Dioxiranes,2 especially dimethyldioxirane (DMD) (1a)3 and methyl(trifluoromethyl)dioxirane (TFD) (1b)4 in
the isolated form, have nowadays become well established as powerful oxidants. Indeed, these reagents can be
employed to carry out a number of synthetically useful oxidative transformations,5 including the easy
regeneration of the carbonyl moiety from acetals and orthoesters.6 In this context, we have shown that
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Typical results in Table 1 show that representative hydrazones 2a-h can be converted into the corresponding
nitriles in almost quantitative yield and in a remarkably short reaction time.
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dimethyldioxirane (1a) in acetone.4

entry substrate( # )

1  m-OaNCgH4CH=N-N(Me), (2a) 0.156 m-0;NCgHy-C=N (3a) 97

2 p-CICgH4-CH=N-N(Me), (2b) 0.603  p-ClCgH4-C=N (3k) 98
-CH= 2
CeHs-CH=N-N(Me), ( C? (1(X)O) CeHs-C=N (30) o7
3'  CeHs-CD=N-N(Me), (2¢") 1.0004 |
4  p-MeOCgzH,-CH=N-N(Me), (2d) 2.580 p-MeOC H,-C=N (3d) 08
5 (E)-CgHsCH=CH-CH=N-N{Me), (2¢) - (E)-CgHsCH=CH-C=N (3e) 92

l—i
6 ¢ =N @nH - § o=N @30 97
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=\’ (99%) € c=N  (98%)f
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8 > | N (2h) =l (3h) 92

v (93.5%) € U (93%)f

|

@ All reactions routinely run at 0 °C, with dioxirane to substrate molar ratio ca. 2 to
1; in all cases, durin a > 98% substrate conversion was achieved as
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these, dioxirane 1a was applied in the isolated form as acetone solution; -/ the latter was obtained according to
described protocols.3 In the simple general procedure, an aliquot (10-15 mL) containing 2 equiv of a
standardized cold solution of dimethyldioxirane (1a) (ca. 0.1 M in acetone) was added to a stirred solution of 1
equiv of the hydrazone (0.5-0.7 mmol) in acetone (5 mL), kept at O °C. The nitriles 3a-h!0 (Table 1) could be
obtained in practically pure form simply upon removal of the acetone solvent in vacuo; they were identified upon
comparison of their physical constants and spectral characteristics (MS, FT IR, and/or lH NMR, 13C NMR)
with those of authentic samples and/or literature data.10.11

Apnlication of the more nowerful mi-rhvl(mﬂnnr omethylldioxirane (1b) to carry out the transformation at hand
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was less satisfactory than la, yielding inferior nitrile yields and lower substrate conversions; seemingly, the
hydrazones are capable of triggering the competitive decomposition of 1b.7
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facile conversion of nitriles into the corresponding amides using dimethyidioxirane (1a), either generated in sifu
or in the isolated form.!2 In our hands, none of the nitriles 3a-h underwent this transformation in the attempted
reaction with dioxirane 1a excess (3 equiv) in acetone at 25 °C; after 24 h, GC and GC/MS monitoring revealed
no detectable amount of amide and showed that the nitrile had remained unchanged. Similarly, we find that
benzonitrile (3¢) is not appreciably converted into benzamide even after exposure to aqueous caroate/acetone at
pH 7.0-7.5 (in situ DMD)2-3:13 under conditions similar to those reported. 1

Examples in Table 1 illu,strate the efficient transformation of N,N-dimethylhydrazones (convenient derivatives

or aldehyde isolation and purification) into nitriles. Chemoselectivity of the -NNMej; — -C=N oxidative

conversion is illustrated by the fact that the C=C unsaturated functionalities in 2e-g, and the
O,0-isopropylidene group in 2h are ieft unaltered; also, nitriles 3g and 3h are isolated with no loss of optical
purity by the oxidation of hydrazone 2g (derived from citronelial) or o
(Table 1, entry 7 and 8).

As for the reaction mechanism, relative rate data for the series of ring-substituted aryl hydrazones 2a-d under

identical conditions (Table 1, entry 1 to 4) yield an Hammett's p of ca. -1.22,14 suggesting that the oxidation

f the sugar derivative 2h, respectively

involves electrophilic O-transfer from the dioxirane to the substrate. Then, on a parallel with the mechanism
invoked for the oxidation of aldehyde hydrazones by pcracids,lf for the case at hand one could advance the

N—NMe, ;><Z [ N ql@ ] Me_ Me
e e R O
H I @ J OH(D)
(D)
I
Scheme 2

Thus, subsequent to electrophilic O-transfer to the distal nitrogen atom of the -NNMe; functionality, the labile
intermediate 7 would break down to yield the nitrile and hydroxylamine;lf the latter is further oxidized, most

likely via the corresponding N-oxide (consuming further dioxirane).!> Obviously, a key feature of the
mechanism consists in the H-transfer occurring in the second step, as sketched in Scheme 2. Using

J
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thylhydrazone (2¢) and its deutero derivative 2¢', we were able to estimate a primary

benzaldehyde N,N-dimett
kinetic isotope effect (kp/kp) = 1.00;14 this suggests that the C-H bond breaking does not occur in the rate
determining step. Therefore, if the mechanism in Scheme 1 applies, the slow step should be represented by the
crucial O-transfer by the dioxirane to the substrate -NNMe; moiety.

Be the mechanistic details as it may, the results reported herein suggest that dioxirane oxidation constitutes a
substantial new entry into the high-yield synthesis of nitriles via N,N-dialkylhydrazones, alternative to using
peracids. For instance, under comparable conditions we could achieve the conversion of the sugar derivative 2h
ust 75% yield during 2 h using MMPP, 1f as compared to 92% yield and 3 min
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reaction time with DM (Tabl 1 ntry 8). Besides, pIOdUCt isolation is attractwely simple usmg DMD since it
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